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This lecture, we focus on the convergence of Kalman Filter. As mentioned in the previous lecture,
the Kalman Filter can be used to estimate the system state x. The tracking capability that using
x̂ to estimate x in a dynamical system is also needed to consider. In the lecture, we show that
the Kalman Filter will always converge to some certain steady state no matter the stability of the
original dynamical system.

1 Kalman Filter Framework

Following from the previous lecture, consider a dynamical system with state space equations

xt+1 = Axt + wt (process/state equation) (1)
yt = Cxt + vt (measurement equation) (2)

in which the initial condition and noises are assumed to be normally distributed such that

x0 ∼ N (µ0,Σ0)

wt ∼ N (0,W )

vt ∼ N (0, V ).

Additionally, the noises wt and vt are independent of x0, x1, . . . , xt, and the w0, . . . , wt, v0, . . . , vt
are mutually independent.

Since we have no direct access to the actual state xt, the goal will be estimating xt based on the
measurements y0, y1, . . . , yt−1. To obtain the estimates,

x̂t = E(xt | y0, y1, . . . , yt−1)
Σt = Cov(xt | y0, y1, . . . , yt−1),

we can use the Kalman Filter:

Lt = −AΣtC
T(CΣtC

T + V
)−1

x̂t+1 = (A+ LtC)x̂t − Ltyt

Σt+1 = (A+ LtC)ΣtA
T +W

where Lt is also known as the Kalman gain.

Note: The Kalman filter is also a common state observer used for linear systems. In other parts of
the world (in Sweden, for example), people use K for the Kalman Filter gain and L for the controller
gain. In the US, we typically write K for the controller gain and L for the observer gain since L is
also for the Luenberger Observer.

Overall, the structure of a system with a Kalman Filter is shown in Fig. 1.
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xt+1 = Axt + wt

yt = Cxt + vt

Dynamical System
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Figure 1: Block diagram of the system with Kalman Filter. wt and vt could be dis-
turbances or noises. yt is the measurement of the dynamical system. x̂t is the online
estimate of system state xt.

2 Convergence without Measurement Update

Let us first consider the case that there is no measurement update. Then, all we have is just the
system propagating on its own through time and we are trying to keep track of the estimates. The
estimator will look like

x̂t+1 = Ax̂t (3)

Σt+1 = AΣtA
T +W (4)

in which the estimate mean and covariances only update based on the latest previous estimate.
What we really care about in this case is whether or not the Σt converges as t→∞.

Intuitively, we can start the discussion of the convergence problem in a noiseless scalar exam-
ple:

xt+1 = Axt + wt

where A, xt, wt are assumed to be scalars. First, consider the there is no noise, i.e. wt = 0. If A has
a magnitude greater than one, then xt will go to infinity as t→∞. If A has a magnitude less than
one, then xt will converge to zero as t→∞. Whereas, in the case we have a Gaussian distributed
noise wt ∼ N (0,W ), the state xt will never converge to zero due to the randomness added from
the noise. Similar to the noiseless case, if A has a magnitude less than one, instead of converges to
zero, xt will reach some steady state that the amount of decrease caused by the multiplication of A
is balanced by the amount of increase caused by adding the noise. At the end, the randomness of
xt as t→∞ should reach a steady state, which can be described by a steady-state covariance. So,
if the covariance Σt converges as t→∞ and the limit is assumed to be

lim
t→∞

Σt = Σ

then according to Eq. (4), in the steady state, we should have

Σ = AΣAT +W (5)

which is in the form of discrete Lyapunov equation and can be solved in MATLAB with command
Sigma = dlyap(A,W). Theorem 2.1 provides the conditions of the convergence.

Note: The continuous Lyapunov equation for a continuous system ẋ = Ax should be in the form
of

AΣ + ΣAT +W = 0

which can be solved in MATLAB with command Sigma = lyap(A,W).
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Theorem 2.1. Let W � 0, the followings are equivalent:

(i) For any Σ0, Σt+1 = AΣtA
T +W converges to Σ. (Independent of Σ0)

(ii) The Lyapunov equation AΣAT − Σ +W = 0 has a unique solution and Σ � 0.

(iii) The matrix A is Schur-stable.

Note: The spectral radius ρ(A) is the largest eigenvalue magnitude among all eigenvalues of A. We
say that A is Schur-stable (or just stable) when ρ(A) < 1. Equivalently, limt→∞A

t = 0.

Brief proof of (i). To prove (i) based on either of (ii) and (iii), we can subtract Eq. (5) from Eq. (4)

Σt+1 − Σ = A
(
Σt − Σ

)
AT

and by iterating, we obtain
Σt − Σ = At

(
Σ0 − Σ

)(
AT)t.

If A is Schur-stable, then At → 0 as t→∞, so we have Σt → Σ as t→∞. �

Brief proof of (iii). To prove (iii) based on (i) and (ii), suppose ATv = λv. Rewrite Eq. (4) as

v∗Σt+1v = |λ|2v∗Σtv + v∗Wv (6)

where v∗ is the conjugate transpose of v (note that λ and v are complex, in general). Let vt+1 =
v∗Σt+1v and c = v∗Wv, Eq. (6) becomes a scalar equation

vt+1 = |λ|2vt + c

where c is a positive number since W � 0. Therefore, vt is

vt = |λ|2t +
(
1 + |λ|2 + |λ|4 + · · ·+ |λ|2t−2

)
c

and the geometric series of vt only converges when |λ| < 1. And in this case,

lim
t→∞

vt =
c

1− |λ|2
.

�

Difference between eigenvalues and singular values in terms of system stability

In the previous lectures, we talked about singular values whereas we only discuss the eigenvalues in
this lecture. Although in some cases singular values and eigenvalues are the same thing, there are
some differences in terms of the stability of A. For example, in our case, we have the system

xt+1 = Axt.

All eigenvalues of A have magnitude less than one would be both necessary and sufficient for the
system to be stable, i.e.

|λ(A)| < 1⇐⇒ ‖xt‖ → 0 as t→∞.
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As for the singular values, the singular values of A are less than one is sufficient for the system to
be stable, i.e.

σ1 < 1 =⇒ ‖xt‖ → 0 as t→∞.
The difference can be checked by comparing the spectral radius ρ(A) of A and the the largest
singular values. It is a fact that

ρ(A) := max
i
|λi(A)| ≤ σ1.

It is possible to have σ1 > 1 and ρ(A) < 1 at the same time such that the system is still stable. An
example could be the case that

A =

[
0.9 0
100 0.9

]
, x0 =

[
1
0

]
where A has singular values of 100.0081 and 0.0081 and eigenvalues of 0.9 and 0.9. The norm of xt
can be calculated as

‖xt‖ = ‖Atx0‖.
For the first 200 iterations, the norm ‖xt‖ is shown in Fig. 2 where ‖xt‖ does not decrease to zero
monotonically while the system is still stable.
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Figure 2: Example of a stable system xt+1 = Axt where A has singular values of
100.0081 and 0.0081.

For the case that the singular values of A are less than one, we can also write

σ1 < 1⇐⇒ ‖xt‖ → 0 monotonically, as t→∞.

which can be proved with the definition of matrix norms

‖xt+1‖ = ‖Axt‖ ≤ ‖A‖‖xt‖ = σ1‖xt‖,

where
‖A‖ = max

‖Ax‖
‖x‖

= σ1.
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3 Convergence with Measurement Update

In Section 2, without the measurement update, the convergence of the covariance in Eq. (4) depen-
dent on the stability of A. Similarly, for the version with measurement update, we can also find out
in what cases the covariance of the estimates converges to a certain “value”. In this case, we have
the Kalman filter with initial conditions:

x̂0 = µ0

Σ0 = Σ0

Lt = −AΣtC
T(CΣtC

T + V
)−1

x̂t+1 = (A+ LtC)x̂t − Ltyt

Σt+1 = AΣtA
T +W −AΣtC

T(CΣtC
T + V

)−1
CΣtA

T (7)

= (A+ LtC)ΣtA
T +W

We would like for the error covariance Σt to converge to some Σ, which would mean that the Kalman
gain Lt will also converge to some L. In practice, the Kalman filter is often run for a long time, so
to good approximation, we can just compute Σ and L and use the steady-state filter

x̂t+1 = (A+ LC)x̂t − Lyt. (8)

Similar to Eq. (4) and Eq. (5), if Σt in Eq. (7) converges to Σ, then Σ must satisfy the discrete time
algebraic Riccati equation (ARE):

AΣAT − Σ +W −AΣCT(CΣCT + V
)−1

CΣAT = 0 . (9)

Theorem 3.1. If W � 0, V � 0, (C,A) is detectable, and (A,W ) is stabilizable, then:

(i) The ARE (9) has a unique solution satisfying Σ � 0. This is called the “stabilizing solution”.

(ii) Σ can be found by iterating Eq. (7) starting from any initial Σ0 � 0.

(iii) Let L := −AΣCT(CΣCT + V
)−1. The matrix A+ LC is Schur-stable.

Note:

• (C,A) detectable means that there exists an L such that A+LC is stable. When A is stable,
we can just pick L = 0 so this is always true.

• (A,W ) stabilizable means there exists a K such that A + WK is stable. When W � 0, we
can just pick K = −W−1A, so this is always true.

• For (i), Eq. (9) has many other solutions, but there is only one solution satisfying Σ � 0.

• The discrete time algebraic Riccati equation Eq. (9) can be solved in MATLAB with command
idare. Similarly, the continuous time algebraic Riccati equation can be solved in MATLAB
with command icare.
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• The ARE Eq. (9) can also be rewritten in the form of Lyapunov equation:(
A+ LC

)
Σ
(
A+ LC

)T − Σ +
(
W + LV LT) = 0 (10)

which is important when analyzing the error dynamics.

• In the scalar case, Lyapunov equations are linear equations and algebraic Riccati equations
are quadratic equations. So you can think about these matrix equations as generalizations of
their scalar counterparts.

4 Error Dynamics

By substituting the measurement Eq. (2) into the steady-state Kalman Filter Eq. (8), we can rewrite
the state updating equation as

x̂t+1 = (A+ LC)x̂t − L
(
Cxt + vt

)
. (11)

Then, defining the tracking error as et := xt − x̂t and subtracting Eq. (11) from Eq. (1)

xt+1 = Axt + wt,

we have the error dynamics equation

et+1 =
(
A+ LC

)
et +

(
wt + Lvt

)
(12)

which does not directly depend on the measurements. In Eq. (12), wt + Lvt is a combination of
noises wt and vt. Additionally, from Theorem 3.1 we have that A+LC is stable, therefore, the error
will eventually reach a steady state. To find the steady-state covariance, we can take the covariance
of both sides of Eq. (12), and in the limit t→∞, we recover the Lyapunov equation Eq. (10).

Thus, supported by Theorem 2.1 and Theorem 3.1, the error dynamics Eq. (12) should always be
stable no matter the stability of the original system A.

These comments apply for any other Luenberger observer as well. For example, suppose we pick
any other L (not necessarily the Kalman gain) such that A + LC is stable. Then, if we define the
observer dynamics

x̂t+1 = (A+ LC)x̂t − Lyt
as before, then we will obtain the same error dynamics of Eq. (12) and we can evaluate the steady-
state error covariance associated with this new L by solving the Lyapunov equation Eq. (10).
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5 Spring-mass-damper example revisited

Recall the spring-mass-damper example from Lecture 11. We will revisit this example in light of
the steady-state results derived in this lecture.

First, we can check that the error covariance tends to a steady state. In Fig. 3, we plot the diagonal
components of Σt with no measurements (time update only) and with Kalman filtering. We also
plot the components of Lt on a shorter timescale. Two observations:

• The no-measurement covariances are larger than the KF covariances. This is because the
diagonal components we are plotting are the variances of the individual states, and those will
always improve when measurements are observed.

• The no-measurement covariances take longer to converge than the KF covariances. This is
because the no-measurement covariance convergence depends on the eigenvalues of A while the
KF covariance convergence depends on the eigenvalues of A+LC. We have ρ(A+LC) < ρ(A)
so the KF gains converge faster.

In Fig. 4, we run the same code on an unstable version of the system (changed the signs of the
dampers bi). In this case, the error dynamics are still stable but the no-measurement covariance is
unstable because ρ(A) > 1.

In the unstable case, even though the state xt is unbounded, the error xt − x̂t is stable, so our
estimate tracks the true state well.
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Figure 3: Long-term trends for Σt (time update only vs. Kalman Filter) and the Kalman
gain Lt. Both converge, but the KF gains converge faster. (note the different time axes)
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Figure 4: Same as Fig. 3, but with unstable open-loop dynamics. The KF error is still
stable, but the no-measurement error grows without bound.
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